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Glaucoma causes irreversible vision loss, and early detection of glaucoma is essential to protect the vision
of patients. The optic cup (OC) and optic disc (OD) are two critical anatomical structures for glaucoma
diagnosis. Methods based on convolutional neural networks (CNNs) have been proposed to extract OC
and OD, in which OC extraction is very challenging. However, the clinical prior knowledge is not fully uti-
lized in existing CNN methods, which limits the performance of extracting OC and OD. Besides, CNN
methods cannot learn long-range semantic information interaction well due to the intrinsic locality of
convolution operations. In this paper, we propose a Prior Knowledge-based Relation Transformer
Network (PKRT-Net), which employs the clinical prior knowledge to assist OC segmentation and model
efficient long-range relation of spatial features by the transformer. PKRT-Net consists of a dual-branch
module, a relation transformer fusion module, and a decoder with weighted fusion. Dual-branch module
decouples the fundus image into the vessel feature space and general local feature space; the relation
transformer fusion module fuses the clinical prior information with local features to obtain more repre-
sentative features; the weighted fusion module fuses the multi-scale side-outputs from the decoder with
the representation of relation transformer module to improve the segmentation performance. We eval-
uate our proposed PKRT-Net on three public available OC and OD segmentation datasets (i.e., Drishti-
GS, RIM-ONE(r3), and REFUGE). The experimental results demonstrate that our proposed PKRT-Net
framework achieves state-of-the-art OC and OD segmentation results on these three public datasets.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

Glaucoma is one of the most severe diseases that cause blind-
ness worldwide. By 2040, the number of glaucoma patients will
reach 110 Million [1]. Glaucoma is highly concerned in ophthal-
mology as the visual impairment of glaucoma patients is irre-
versible [2]. When glaucoma patients perceive their vision loss,
severe and irreversible degeneration has already occurred in their
optic nerve fiber layer [3]. If early-stage glaucoma is detected in
the screening, reasonable treatment can effectively control the
vision deterioration of the early-stage glaucoma patients [2]. Thus,
large-scale glaucoma screening is essential for the prevention of
vision loss [4]. However, early diagnosis of glaucoma usually
requires experienced ophthalmologists, and the number of avail-
able specialists cannot meet the huge demand for glaucoma
screening. Therefore, efficient automatic glaucoma detection tech-
nology is very important to achieving large-scale glaucoma
screening.

Fundus image is a standard imaging technique for glaucoma
detection [5–8]. Glaucoma specialists use fundus images to diag-
nose glaucoma based on two anatomical structures in the fundus
images: optic cup (OC) and optic disc (OD). As shown in Fig. 1(a),
the closed curves in green and blue represent the OC and OD
boundaries, respectively. OD is the bright oval area in the fundus
image, and it is the place where the optic nerve fibers enter the
eye [9,10]. The OC is a bright cup-shaped area in OD. OC’s boundary
is unclear due to information loss from the 3D retina to the 2D
image projection [11]. The information loss makes it very difficult
to determine the OC’s boundary, as shown in Fig. 1 and 2. Senior
glaucoma specialists use vessel kinks to aid in the extraction of
OC from 2D fundus images [12]. Vessel kink has a well-defined
geometric definition as expert knowledge, it is the bending of the
blood vessel at the OC’s boundary. Fig. 1(b) shows the process of
vessel kink from 3D projection to the 2D image. The OC boundaries
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Fig. 1. The structure of the optic cup (OC) and optic disc (OD) in the color fundus
image. (a) Illustration of the OC and OD in a zoomed fundus image. (b) Illustration
of kink. Kinks (i.e., expert knowledge) are bending of the blood vessel at the OC’s
boundary.

Fig. 2. Correlation between vessel kinks and OC boundaries. The closed curves in
green and blue represent the optic cup and optic disc boundaries, respectively.
Kinks are bending of the blood vessel at the OC’s boundary. (a) Glaucomatous case
with unclear boundaries requires kinks to determine the OC boundaries. (b) Normal
case with unclear boundaries requires kinks to determine the OC boundaries.
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and kinks in the 2D fundus image are highly correlated [13], as can
be observed in Fig. 1 and 2.

Recently a number of works have been proposed for OC and OD
segmentation. These methods can be divided into traditional
methods based on hand-crafted features and deep learning based
on CNNs. Traditional methods mainly include edge detection
methods, thresholding methods, color difference methods, and
superpixel methods [14–27]. These methods mainly perform
image segmentation based on hand-crafted features, which are
easily affected by the image quality and noisy lesions. Compared
with traditional methods, convolutional neural networks (CNNs)
can automatically extract features from images. Many CNN-based
variants have been proposed to segment OC and OD [28–37]. These
CNN-based methods achieve better performance than hand-
crafted feature based methods.
2

However, the OC and OD segmentation methods based on CNNs
are more inclined to focus on the image’s local edge features and
lack the ability to model long-range relations. When CNNs encoun-
ter fundus images without obvious boundaries, the performance of
CNN-based methods will be greatly degraded. The OC boundaries
of the cases in Fig. 2 (a and b) are not obvious. The OC boundaries
of Fig. 2 (a and b) need to be determined with the clinical prior
knowledge (i.e., kinks). Kinks not only have a decisive effect on
the adjacent OC boundaries, but also have a constraining effect
on the distant OC boundaries. CNN-based methods generally exhi-
bit limitations for modeling explicit long-range relations between
OC and the clinical prior knowledge due to the properties of the
local operation. Therefore, it is necessary to effectively model the
long-range dependency between the clinical prior knowledge and
OC boundary to improve the performance of OC segmentation. To
our best knowledge, there is no work incorporating a clinical prior
knowledge (i.e., vessel information) into deep learning for OC and
OD segmentation. To alleviate the above mentioned limitations,
in this paper, we propose a novel Prior Knowledge-based Relation
Transformer Network (PKRT-Net), which models long-range rela-
tions between features guided by the clinical prior knowledge to
segment OC and OD. We introduce a vessel space containing prior
knowledge (i.e., kinks), which provides feature information related
to the OC and OD from the perspective of vessel features to assist
OC and OD segmentation. To overcome the intrinsic locality limita-
tion of convolution operations, we design a novel relation trans-
former to model the long-range dependencies between OC/OD
features and prior knowledge. Specifically, our proposed PKRT-
Net consists of three parts: dual-branch module (DBM), relation
transformer fusion module (RTFM), and decoder with weighted
fusion module (WFM). Different from existing methods, DBM
incorporates clinical knowledge into our framework. In DBM, the
fundus image is first sent to two independent branch networks
for feature extraction from the two aspects of the clinical knowl-
edge and local information. The clinical prior knowledge branch
is restricted to extracting OC information from the perspective of
vessel features. Then the local edge features and vessel features
from the two branch networks are further fed into RTFM. RTFM
facilitates the fusion of local features and vessel features based
on expert knowledge, and efficiently models long-range relations
in the spatial space. Finally, the weighted fusion module enhances
the features from the decoder by attention blocks, and simultane-
ously fuses the features of RTFM to high-level layers to improve
segmentation performance. We evaluate our PKRT-Net framework
on three public available datasets (i.e., Drishti-GS [3], RIM-ONE(r3)
[2], and REFUGE [38]). Our framework outperforms the state-of-
the-art approaches, bringing significant improvements by incorpo-
rating the clinical knowledge. Our contributions are summarized
as follows:

1. To our best knowledge, our proposed method is the first
attempt to incorporate the clinical vessel knowledge in deep
learning methods to segment OC and OD. When the edge infor-
mation of OC is unclear, our proposed dual-branch module
based on the clinical prior knowledge can provide the blood
vessel information related to OC to assist the OC segmentation.

2. We propose a relation transformer fusion module (RTFM),
which is able to exploit not only the intra-branch relationship
in each branch, but also the inter-branch relationship between
a local edge feature branch and a prior knowledge branch. In
addition, RTFM can effectively model the long-range dependen-
cies of features to achieve accurate segmentation of OC and OD.

3. The weighted fusion module is designed to directly fuse fea-
tures from the RTFM with the decoder’s features to improve
the final OC segmentation performance while enhancing the
multi-scale output with the attention block.
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The remainder of this article will be organized as follows. We
review related works in Section 2. Our proposed PKRT-Net frame-
work is introduced in Section 3. The experimental setup and exper-
imental results are presented in Section 4. Conclusions are put in
Section 5.
2. Related works

In this section, related works about OC and OD segmentation
are discussed. OC and OD segmentation methods are classified into
two categories including hand-crafted feature based methods and
deep learning based methods. Furthermore, we briefly review clin-
icians’ knowledge related to OC and OD and transformer mecha-
nism based methods.
2.1. OC and OD segmentation

Many hand-crafted feature based methods were designed to
segment OC and OD. Earlier, template based models were proposed
to obtain OD boundaries. The segmentation problem was trans-
formed into a problem of minimizing energies related to intensity,
texture, and boundary smoothness. The active contour model was
utilized to detect the contour based on image gradient [18]. OD
was modeled as elliptical objects using the Hough transform
[19,26,27]. Deformable-based models were used to segment OC
and OD [18,14]. For example, OD was firstly located and then OC
was segmented using a deformable contour model [18]. However,
these methods are susceptible to image quality, contrast changes,
and blood vessels. Recently, several methods have been proposed
to transform the boundary detection problem into a pixel classifi-
cation problem. For example, Cheng et al. [15] segmented OC and
OD using a superpixel classifier, which exploits various hand-
crafted features. All of the above methods are highly dependent
on hand-crafted features.

Many methods based on deep learning have been proposed to
segment OC and OD. Zilly et al. [29] extracted OC and OD by an
ensemble learning method based on CNN framework, which
obtained informative points by an entropy sampling technique.
Sevastopolsky proposed a lightweight and efficient Modified U-
Net [30] to segment OC and OD. In [31], a cascade network was
designed to extract OC and OD based on the U-Net networks.
Unlike the previous CNNs, M-Net [32] proposed a method to jointly
segment the OC and OD based on the U-shaped network. Gu et al.
[39] proposed a context encoder network (CE-Net), which can
maintain rich spatial information while extracting high-level fea-
tures. Xu et al. [40] proposed a multi-scale and multi-kernel U-
shaped network that can adaptively adjust the sampling of the
sample space. A spatial-aware joint segmentation method [33]
was proposed by considering the multi-scale spatially dense fea-
tures. A level set based deep learning method [34] was proposed
for optic disc and cup segmentation. To enhance the robustness
of the model on datasets from different sources, some adversarial
learning network-based methods were proposed to segment OC
and OD. TAU [41] proposed a transferable attention U-Net model
for OC and OD segmentation tasks with two discriminators and
attention modules. In [35], a patch-based output space adversarial
learning framework was designed to segment OC and OD. A WGAN
domain adaptation framework was proposed in [36] for segment-
ing OC and OD in fundus images. In [37], a domain adaptation
framework was proposed to segment OC and OD on fundus images
based on image synthesis and feature alignment method.

Compared to hand-crafted feature-based methods, deep learn-
ing methods are able to extract features for OC and OD segmenta-
tion automatically. Many CNN-based network variants were
designed to segment OC and OD. However, these deep learning
3

methods neglect to combine the clinical prior information to
obtain more accurate OC boundaries. Prior knowledge is essential
for clinicians to determine OC boundaries.In our method, we
explore incorporating the clinical vessel knowledge in an indepen-
dent feature extraction branch. Then a transformer-based fusion
module is proposed to fuse the clinical prior knowledge to assist
OC segmentation.

2.2. Vessel kinks

When there is no color change at the OC boundary in a 2D reti-
nal image, the method based on a color change to extract the
boundary will fail. Several hand-crafted methods used vessel kink
points as a clinical prior knowledge to extract OC boundaries. In
[13], blood kinks were exploited to locate OC boundaries. In [14],
the same vessel bend concept was proposed for OC segmentation.
By using the information of vessel kink, meaningful information of
3D is obtained in a 2D retinal image. clinical prior knowledge is
currently only used in hand-crafted feature based methods for
OC segmentation. Deep learning methods lack the clinical prior
knowledge to accomplish the target task. In this paper, we combine
the clinical prior knowledge with deep learning for automatic OC
segmentation.

2.3. Transformer

The transformer was first proposed in the machine translation
task [42], and it has produced many state-of-the-art methods in
the field of natural language processing (NLP) [43,44]. Inspired
by transformers, many works tried to extend transformers to the
field of computer vision. In [45], the image size that the model
can process increases by restricting the self-attention mechanism
in the local information. Scalable approximations to global self-
attention were employed in Sparse Transformers[46]. Recently,
some efficient and effective transformer-based work has been pro-
posed. For example, Vision Transformer (ViT) [47] designed the
classification network based on the standard transformer module
to achieve the state-of-the-art method on ImageNet classification.
TransUNet [48] combined transformer and U-Net for medical
image segmentation. Swin-UNet[49] designed a UNet-like pure
transformer architecture based on shifted windows mechanism
for medical image segmentation. Different from the existing trans-
former layers, we design a new relation transformer layer that can
model the relationship of features from two different branches. The
proposed relation transformer is able to exploit not only the intra-
branch relationship in each branch, but also the inter-branch rela-
tionship between a local edge feature branch and a prior knowl-
edge branch in medical image processing.
3. Methods

We propose a PKRT-Net framework to segment the OC and OD,
as shown in Fig. 3. The main difference between the proposed
approach and existing ones is that our framework utilizes the rela-
tion transformer to model long-range feature dependencies guided
by the clinical prior information. The proposed PKRT-Net frame-
work consists of three major parts: the dual-branch module, the
relation transformer fusion module, and the weighted fusion-
based decoder. We first locate the OD center by our previous
method [9,10]. The region of the fundus image that contains the
OC is cropped out automatically. Region of interest (ROI) in a fun-
dus image X 2 RH�W�3 is fed into the dual-branch module (DBM),
which is composed of two independent branches: general feature
extraction branch and vessel feature guidance branch. DBM decou-
ples fundus images into two different feature spaces. The two



Fig. 3. Illustration of our PKRT-Net architecture, which consists of the dual-branch module (DBM), the relation transformer fusion module (RTFM), and the decoder with
weighted fusion module (WFM). ROI of the fundus image is fed into the dual-branch module, which extracts two decoupled features from two different branch networks.
Further, the relation transformer fusion module (RTFM) fuses two decoupled features from the dual branch network. Finally, the weighted fusion module (WFM) fuses RTFM’s
features and the decoder’s features to obtain the final segmentation result.
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decoupled features are further fed into the relation transformer
feature fusion module simultaneously. RTFM can improve the
accuracy of OC by fusing the clinical prior knowledge and modeling
local and long-range relations. The output of the RTFM module is
further passed through the decoder, which gradually restores the
scale of the high-level features to the width and height of the fun-
dus image. Finally, the weighted fusion module incorporated deco-
der’s multi-slice output with the representations of the relation
transformer to improve segmentation performance. The proposed
approach can produce efficient results without using any intensity
normalization stage, such as presented in [50,51], which increases
computational costs. In this section, we introduce the proposed
segmentation framework in detail.

3.1. Dual-branch module

Our target task is closely related to vessel information of the
fundus image. So we consider creating an additional branch to
extract features of the target from the perspective of the vessel
space, which is different from existing methods. In this way, the
fundus image is decoupled into a general feature space and vessel
feature space, respectively. To achieve this, we propose the dual-
branch module, as shown in the top left green box in Fig. 3. The
dual-branch module consists of the general feature extraction
branch EnG and the vessel feature guidance branch EnV . F

G and FV

represent the features extracted by EnG and EnV , respectively. I
and V denote the fundus image and vessel extractor function,
respectively. Eq. (a) indicates that the general feature extraction
branch EnG extracts the decoupled feature FG from the fundus
image. Eq. (b) indicates that the vessel feature guidance branch
EnV extracts decoupled features FV from the fundus image under
the constraints of the vessel feature space.

FG ¼EnG Ið Þ; ðaÞ
FV ¼EnV IjV Ið Þð Þ: ðbÞ

General feature extraction branch. It mainly relies on the edge
information and local information of the feature. The general fea-
ture extraction branch uses the ResNet network as its backbone.
4

The global average pooling layer and the final fully connected layer
of ResNet are deleted, and the four stages of the ResNet backbone
are retained. Each stage is composed of multiple residual blocks.
Each residual block consists of two 3� 3 convolutional layers
and a residual connection. Each convolutional layer is followed
by a batch normalization (BN) layer and rectified linear unit (ReLU)
activation function. Activation functions should be chosen care-
fully in deep networks with residual blocks [52]. Although, various
activation functions have been applied in recent works [53–57],
ReLU has been used in the proposed architecture due to its
efficiency.

Vessel feature guidance branch. It extracts features from the per-
spective of blood vessels to guide the segmentation of OC. The ves-
sel feature guidance branch includes a blood vessel extractor and a
vessel feature encoder network. First, the fundus image is used to
extract the vessel information through the vessel extractor. The
vessel extraction method is the extractor in [39], and its main
structure is the U-shaped network. The blood vessel extractor first
extracts the vessel structure, then the vessel is sent to the vessel
feature encoder network. ResNet-34 is used as the backbone of
the vessel feature encoder network, and its structure is similar to
the general feature extraction branch network.
3.2. Relation transformer fusion module

In this section, we introduce how to model both general feature
space and vessel feature space relationships in a unified model
using our relation transformer. Due to the limitations of the intrin-
sic locality of convolution operations, we propose a relation trans-
former fusion module to fuse the features extracted from the two-
branch network. Compared with the transformer module in
[42,47], the relation transformer we proposed can not only pro-
mote the feature interaction within a single branch, but also
increase the feature information interaction in both branch net-
works. The relation transformer fusion module mainly includes
patch embedding, position embedding, and a relation transformer
layer. Firstly the decoupled features from 2D images are split into
patch sequences by patch embedding, and then the patch
sequences are assigned position information. Finally, the relation
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transformer layers fuse the patch sequences from the two decou-
pled spaces.

Patch embedding and position embedding. FG and FV are the fea-
tures extracted from the dual-branch network as shown in Fig. 3.
FG represents general local features, and FV represents clinical prior
information features. We reshape the features FG 2 Rh�w�C and
FV 2 Rh�w�C into two sequences of flattened 2D patches
Xpg 2 RN� C�P�Pð Þ and Xpv 2 RN� C�P�Pð Þ with patches of size P � P, as
shown in Eq. (2). h;wð Þ and C represent the resolution and channel
number of the features, respectively. N ¼ h�w

P�P is the number of
patches. Then Xpg and Xpv are mapped to a D-dimensional space

with a learnable linear projection (i.e., E 2 R P2 �Cð Þ�D), where D rep-
resents the dimension of the latent space. Further a learnable posi-
tion embedding (i.e., Epos 2 RN�D) is added to the patch sequence to
preserve the spatial position information of the sequence, as
shown in following Eqs. (3) and (4). ZG

0 and ZV represent the
sequence feature embeddings from the general feature branch
and the vessel feature branch, respectively.

Xpg ¼ x1pg ; . . . ; x
i
pg . . . ; x

N
pg

h i
; i ¼ 1; . . . ;N;

Xpv ¼ x1pv ; . . . ; x
i
pv . . . ; x

N
pv

h i
; i ¼ 1; . . . ;N;

ð2Þ

ZG
0 ¼ x1pgE; x

2
pgE; � � � ; xNpgE

h i
þ Epos;

E 2 R P2 �Cð Þ�D;Epos 2 RN�D;

ð3Þ

ZV ¼ x1pvE; x
2
pvE; � � � ; xNpvE

h i
þ Epos;

E 2 R P2 �Cð Þ�D;Epos 2 RN�D:

ð4Þ

Relation transformer layer. Compared with the transformer in
[42,47], the proposed relation transformer can fuse the features
of the two branch networks. Relation transformer layer consists
of a multi-head cross-attention (MCA), Layer norm (LN), and
Fig. 4. Illustration of relation transformer layer. ZG
l�1 and ZV represent output of (l-1)-th

Q ;K , and V represent queries, keys, and values. LN and MLP denote the layer norm and t
and the element-wise multiplication, respectively.

5

multi-layer perceptron (MLP) blocks, as shown in Fig. 4. First, the
correlation matrices between two different patch sequences are
calculated in the cross-attention sub-layer, and then the output
of the cross-attention is normalized, and the final result is obtained
through the multi-layer perceptron.

In the multi-head cross-attention sub-layer, h groups parallel
cross-attention heads are concatenated together. The h groups
cross-attention are realized by mapping queries (Q ), keys (K),
and values (V) h times through different learnable linear projec-
tion. Specifically, given two different sequences ZG and ZV (repre-
senting features from two decoupled branches), we compute the
i-th cross-attention inputs query, key and value. ZV is linearly pro-
jected to QV

i withWQ
i , as shown in Fig. 4; ZG is linearly projected to

KG
i and VG

i withWK
i andWV

i , respectively. The query, key and value
are formed with the following equations:

QV
i ¼ ZVWQ

i ;

KG
i ¼ ZGWK

i ;

VG
i ¼ ZGWV

i ;

ð5Þ

where WQ
i 2 Rdmodel�dk ;WK

i 2 Rdmodel�dk ;WV
i 2 Rdmodel�dv , and

dk ¼ dv ¼ dmodel=h ¼ 64. Then we use the Scaled Dot-Product atten-
tion to calculate the correlation matrix, and this correlation matrix
is used for a weighted combination of value. The cross-attention
(CA) formula is described as follows:

CA QV
i ;K

G
i ;V

G
i

� �
¼ SoftMaX

QV
i K

G
i

Tffiffiffiffiffi
dk

p !
VG

i : ð6Þ

Further all heads are calculated and they are concatenated using the
following formula:

MCA ZV ;ZG
� �

¼ Concat head1; . . . ; headhð ÞWO;

headi ¼ CA ZVWQ
i ;Z

GWK
i ;Z

GWV
i

� �
;

ð7Þ
relation transformer and patch sequence features from vessel space, respectively.
he multi-layer perceptron, respectively. � and � denote the element-wise addition
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where WO
i 2 Rh�dv�dmodel .

The output of the MCA is further fed into an MLP with two fully
connected layers to adjust the representation. Given the input of
the MLP x, the MLP can be described as follows:

MLP xð Þ ¼ ReLU xW1 þ b1ð ÞW2 þ b2: ð8Þ
Our proposed relation transformer layer can be fully described in
Eq. (9) and (10). ZV denotes the patch embedding from vessel space,
and ZG

l�1 denotes the output of (l-1)-th relation transformer layer.

cZG
l ¼ MCA LN ZV

� �
; LN ZG

l�1

� �� �
þ ZG

l�1;

l ¼ 1 � � � L;
ð9Þ

ZG
l ¼ MLP LN cZG

l

� �� �
þ cZG

l ; l ¼ 1 � � � L: ð10Þ

Below we will briefly analyze the reasons why RTFM is effective on
our target task. To visualize feature maps more concisely, we only
train OC segmentation for feature heatmap visualization. The fea-
ture heatmap shown in Fig. 4 comes from OC segmentation predic-
tion. In Fig. 4, feature heatmap1 represents edge features; feature
heatmap2 represents vessel structure features; the distribution of
feature heatmap2 is more discrete than that of feature heatmap1.
Feature map heatmap3 represents the features generated by the
visual transformer, and feature map heatmap3 shows that the
visual transformer is able to establish long-range relationships
between features in heatmap1 and features in heatmap2. It can
be observed that the visual transformer can achieve performance
improvement on our target task. Some recent works [58–61] have
also demonstrated that visual transformers have strong cross-
modal modeling capabilities in cross-modal tasks.

3.3. Decoder with weighted fusion module

The decoder branch network has three decoder blocks, three
multi-slice output layers, and a weighted fusion module. Each
decoder block is composed of two convolutional layers and a bilin-
early interpolated up-sampling layer. Each convolutional layer is
followed by a BatchNorm (BN) layer and a ReLU activation func-
tion. The weighted fusion module merges the features of RTFM
and the multi-slice-layer output for the final prediction.

Weighted Fusion Module. Our proposed weighted fusion module
integrates the multi-scale features in the decoder and the repre-
sentation of RTFM to improve the performance of segmentation.
As shown in Fig. 3, the multiple slices output of the decoder will
go through an attention block to pay more attention to useful
information.

In the attention block, the attention among the feature channels
is redistributed, and the feature channel with high saliency will get
a larger attention weight. Specifically, 1� 1 convolution is first
Fig. 5. Illustration of attention block. F;C; r and MLP denote the input feature, the numb
element-wise addition and the element-wise multiplication, respectively.
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used to adjust the channel dimension of the input feature F. Input
feature with new dimensions is denoted as F 0, as shown in Fig. 5.
Then global max-pooling and global average-pooling are used to
squeeze the spatial information of the input feature F 0, respec-
tively. Two 1� 1� C channel descriptors FAvg and FMax are gener-
ated. FAvg and FMax represent the average-pooling and max-
pooling features, respectively. The number of channels of the two
pooling descriptors is the same as that of the feature F 0. FAvg and
FMax share two consecutive fully connected layer. The hidden layer
size of the fully connected layer is set to C=r to reduce the param-
eter amount of the fully connected layer, where r represents the
reduction rate. Finally, the feature vectors of the output of FAvg

and FMax are added element by element, and the result of the addi-
tion is used to generate the attention weight through the sigmoid
function. After that, the input feature and attention weights are
computed by element-wise multiplication.

Objective Function.The final loss function is formulated as
follows,

L ¼ �
XK
k

2wk Pk
T

Gkð Þ
jPk jþjGk j

¼ �
XK
k

2wk

XN
i

p k;ið Þg k;ið Þ

XN
i

p2
k;ið Þþ
XN
i

g2
k;ið Þ

;

ð11Þ

where K represents the number of classes, and k represents the k-th
class; Pk and Gk represent the prediction of the k-th class and the
ground truth of the k-th class, respectively; wk ¼ 1

K denotes class
weight; For a pixel-level perspective, N represents the number of
pixels, and i represents the i-th pixel; g k;ið Þ in 0;1f g represents
whether the i-th pixel belongs to the k-th category; p k;ið Þ in 0;1½ � rep-
resents whether the i-th pixel predicts whether it belongs to class k.
4. Experiments

4.1. Datasets

In our experiment, we evaluated our method and state-of-the-
art methods on three public datasets, namely Drishti-GS [3],
RIM-ONE(r3) [2], and REFUGE [38]. These three datasets come
from different fundus cameras, and their image quality varies
greatly. In our experiment, we evaluated our method and state-
of-the-art methods on three public datasets, namely Drishti-GS,
RIM-ONE(r3), and REFUGE. These three datasets come from differ-
ent fundus cameras, and their image quality varies greatly. The
datasets have been divided into a training set, a validation set,
and a test set and we follow the settings in all the experiments,
er of channels, the reduction rate and the fully connected layer. � and � denote the
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which is consistent with previous methods. The datasets are fur-
ther described as follows:

Drishti-GS dataset: It contains 101 fundus images, including 50
training sets and 51 test sets. The distribution of glaucoma and
normal eyes in the training and test sets is slightly different. The
training set includes 32 glaucoma and 18 normal eyes; the test
set includes 38 glaucoma and 13 normal eyes. The fundus images
are centered on OD, with a field of view of 30 degrees and a reso-
lution of 2896 � 1944. For each fundus image, the annotations
were marked by four glaucoma experts with 3, 5, 9, and 20 years
of experience.

RIM-ONE(r3) dataset: It contains 159 stereo images, including
75 healthy cases and 84 glaucoma suspect cases. The fundus
images were captured by the fundus camera Nidek AFC-210 with
a resolution of 2144 � 1424. The partition of training and test sets
of RIM-ONE(r3) is not given. We divide the dataset into the training
set and test set (99/60) according to [30,28].

REFUGE dataset: It contains 1200 fundus images, which are
equally divided into a training set, validation set, and test set.
The ratio of glaucoma to normal eyes remains the same in the three
sets. The fundus images of the training set were captured by Zeiss
Visucam 500 fundus camera, and the validation/test set was cap-
tured by the Canon CR-2 device [38]. The resolution of the fundus
images taken by the two fundus cameras is shown in Table 1.
Seven experts and a senior specialist voted on the segmentation
of OC and OD.
4.2. Evaluation metric

The comparison methods and the proposed method are evalu-
ated using the classic metric Dice, which is consistent with the ref-
erences [34–38]. Dice coefficient is defined as follows:
Dice ¼ 2TP

TPþFNþTPþFP, where TP and TN represent the number of true
positives and true negatives, respectively, and FP and FN represent
the number of false positives and false negatives, respectively.
4.3. Implementation details

For a more fair comparison, we compare our method with other
approaches in the same test environment, which is Pytorch 1.11 on
top of AMD Ryzen Threadripper 3960X 24-Core Processor and NVI-
DIA GeForce RTXTM3090 graphic card. Mmsegmentation [62] and
segmentation models [63] are two open source libraries that can
fairly compare model parameters and runtimes. A lot of the latest
work code is now integrated into these two libraries. The maxi-
mum number of model epoch for training is 300. We use the Adam
optimizer to update the model parameters, and the initial learning
rate of the parameters is 3� 10�4. Classic data augmentation tech-
niques are used, such as random rotation, flip, and movement. The
cropped fundus image is compressed to 256� 256 resolution.
Transformer-based fusion module contains 3 relation transformer
blocks. Patch size P, Hidden size D and heads h of MCA are set to
Table 1
Description of fundus image datasets.

Dataset Release year Train/val/test N

REFUGE 2018 train
val
test

RIM-ONE(r3) 2011 train
test

Drishti-GS 2015 train
test
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1, 768, and 12 respectively. For different linear projections of
dimensions we use dk ¼ dv ¼ dmodel=h ¼ 64. MLP size is set to 3072.
4.4. Comparison with state-of-the-art methods

For a fair comparison, we verified the model’s performance on
three public data sets. We compared our method with several
state-of-the-art OD and OC methods. Table 2 and 3 show the per-
formance comparison of different deep learning methods on public
datasets Drishti-GS, RIM-ONE(r3), and REFUGE. In addition, we also
compared the latest transformer-based segmentation methods:
TransUNet [48] and swin-UNet [49]. These state-of-the-art meth-
ods can be grouped as follows:

� U-Net methods are characterized by a U-shaped structure.
Modified U-Net [30] and level-set U-Net [34] made some struc-
tural changes based on U-Net, such as adjusting the number of
convolutional layers. In addition, a constraint loss was intro-
duced into level-set U-Net.

� Multi-scale U-Net methods include M-Net [32], Stack-U-Net
[31], CE-Net [39], MSMKU-Net [40], and NENet [64]. The main
feature of this group methods is that multi-scale spatial features
are introduced into the U-shaped network. Many ways were
utilized to realize multi-scale spatial features, such as multi-
scale input and output features, multi-scale high-level latent
space features, etc.

� GAN-based methods contain pOSAL [35], WGAN-seg [36], and
ISFA [37]. This group methods employed an adversarial learning
strategy to construct a domain adaptation framework.

� Transformer-based methods contain TransUNet [48] and
swin-UNet [49]. Transformer blocks were utilized in both meth-
ods for medical image segmentation.

4.4.1. Results on Drishti-GS and RIM-ONE(r3) dataset
We first compared our PKRT-Net with the state-of-the-art

approaches on Drishti-GS and RIM-ONE(r3) datasets. Table 2
shows a performance comparison among these methods. The
GAN-based approaches did not show a segmentation improvement
than U-Net and multi-scale U-Net on the Drishti-GS and RIM-ONE
(r3), which are single-domain datasets. Single-domain dataset
means that the data in the training and test sets of the Drishti-
GS and RIM-ONE(r3) datasets are captured by the same kind of
camera, respectively. This shows that the GAN-based method has
no obvious performance improvement on the single-domain data-
set. Multi-scale U-Net networks (i.e., M-Net, stack-U-Net, CE-Net,
MSMKU-Net, and NENet) achieve higher segmentation Dice than
the U-Net network employing multiscale spatial information mod-
ules/blocks. Due to the properties of local convolution operation,
CNNs lack the ability to model long-range dependency. The
transformer-based approaches (i.e., TransUNet and swin-UNet)
achieve better performance than the multi-scale networks. Com-
pared with transformer-based methods, our PKRT-Net implements
the vessel information constraints to enforce the model to exploit
umber of samples Image size Cameras

400 2124 � 2056 Zeiss Visucam 500
400 1634 � 1634 Canon CR-2
400 1634 � 1634 Canon CR-2

99 2144 � 1424 Nidek AFC-210
60 2144 � 1424 Nidek AFC-210

50 2896 � 1944 unknown
51 2896 � 1944 unknown



Table 2
Performance comparison with different deep learning methods on datasets Drishti-GS and RIM-ONE(r3).

Method Drishti-GS RIM-ONE(r3) Time(ms) FPS Params

DiceCup DiceDisc DiceCup DiceDisc

Modified U-Net [30] 0.8500 – 0.8200 0.9500 1.24 807.95 1 M
Level-set U-Net [34] 0.8706 0.9623 – – 5.45 183.21 31 M

POSAL [35] 0.8580 0.9650 0.7870 0.8650 4.95 202.03 4 M
WGAN-seg [36] 0.8400 0.9540 – – 5.68 176.18 23 M
ISFA [37] 0.8920 0.9660 0.8220 0.9080 19.14 52.24 7 M

M-Net [32] 0.8860 0.9658 – – 4.45 224.63 9 M
Stack-U-Net [31] 0.8900 0.9700 0.8400 0.9500 12.23 81.78 15 M
CE-Net [39] 0.8818 0.9642 0.8435 0.9527 6.82 146.47 39 M
MSMKU-Net [40] – – 0.8564 0.9561 5.49 181.90 12 M
NENet [64] 0.8401 0.9632 0.8680 0.9552 18.21 54.89 30 M

TransUNet [48] 0.8875 0.9575 0.8423 0.9517 14.95 66.88 105 M
Swin-UNet [49] 0.8907 0.9687 0.8574 0.9536 7.57 132.08 21 M

Our PKRT-Net 0.9120 0.9766 0.8723 0.9582 11.14 89.75 56 M

- stands for value not available

Table 3
Performance comparison with different deep learning methods on dataset REFUGE.

Team/Method Year DiceCup DiceDisc Timems

Winter_Fell 0.6861 0.8772 4.10
Cvblab 0.7728 0.9077 10.30
SDSAIRC 0.8315 0.9436 4.45
NIGHTOwl 0.8257 0.9487 –
SMILEDeepDR 0.8367 0.9386 –
Mammoth 0.8667 0.9361 11.05
AIML REFUGE 0.8519 0.9505 43.19
VRT Challenge 0.8600 0.9532 7.31
NKSG 2018 [38] 0.8643 0.9488 10.68
BUCT 0.8728 0.9525 1.24
Masker 0.8837 0.9464 21.33

M-Net [32] 2018 0.8648 0.9359 4.45
POSAL [35] 2019 0.8826 0.9602 4.95
NENet [64] 2021 0.8990 0.9616 18.21
Our PKRT-Net 0.8997 0.9751 11.14
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useful clinical vessel knowledge for OC segmentation, resulting in a
remarkable improvement of Dice of 2:1% and 1:5% on the Drishti-
GS and RIM-ONE(r3), respectively. Our proposed PKRT-Net outper-
forms other state-of-the-art methods. Specifically, PKRT-Net
achieves Dice of 0.9120 and 0.9766 for OC and OD, respectively,
on the Drishti-GS dataset; it also achieves Dice of 0.8723 and
0.9582 for OC and OD, respectively, on the RIM-ONE(r3) dataset.
The experimental results demonstrate that transformer and prior
knowledge-based modules are useful to guide segmentation
training.

We compare computing time and parameters in Table 2. Run-
time, FPS (Frames Per Second), and number of parameters are used
as three evaluation metrics. The runtime represents the time it
takes for the model to complete forward propagation of an image.
FPS is the frequency (rate) at which images are processed. The
above evaluation indicators have also been used in recent research
[65]. It can be seen from Table 2 that the model with the shortest
runtime was Modified U-Net. Models with multi-scale modules
(e.g., Stack-U-Net, M-Net, and NENet) have a larger time consump-
tion than Modified U-Net method. The time consumption of
transformer-based methods (i.e., TransUNet, Swin-UNet, and our
PKRT-Net) is comparable to that of multi-scale methods, because
there are improvements to the original transformer method in
these three transformer-based methods. Both TransUNet and our
PKRT-Net consist of CNN modules and transformer modules. The
advantage of this combination is that only the high-level features
extracted by CNN will be used in the transformer for global feature
8

modeling, which can save a lot of computational consumption. In
addition, CNN modules mainly contain standard 3� 3 convolu-
tions and transformer modules are also based on standard trans-
formers, which can be well accelerated by the Pytorch Deep
Learning framework. Swin-UNet is an improved work based on
the swin-transformer. The advantage of swin-transformer is based
on local window calculation, so the problem of a large amount of
calculation in the transformer is greatly solved. Therefore, the com-
putational efficiency of the transformer-based method is compara-
ble to that of the multi-scale methods in Table 2. For the
comparison of number of parameters, the transformer method is
generally larger than that of the multi-scale CNN methods (e.g.,
M-Net and CE-Net). Because the amount of model parameters does
not determine the inference time of the model, there are examples
where the CNN method takes longer than the transformer method.
As shown in Table 2, NENet is more time-consuming than the
transformer based methods. The main reason is that its backbone
network EfficientNetB4 has a dense branch network, and its low
parallel efficiency leads to more time-consuming inference speed.

4.4.2. Results on REFUGE dataset
We also compared our method with the top-performing meth-

ods from the REFUGE challenge [38] and the latest method based
on the REFUGE dataset, as shown in Table 3. Top-performing meth-
ods and the REFUGE dataset were released in Retinal Fundus Glau-
coma Challenge held by MACCAI (Medical Image Computing and
Computer Assisted Intervention Society). Different from Drishti-
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GS and RIM-ONE(r3) dataset, REFUGE is a cross-domain dataset.
The training and validation/test data of REFUGE dataset are from
two different types of fundus cameras. Our method outperforms
the state-of-the-art methods and achieves Dice of 0.8997 and
0.9751 for OC and OD, respectively.

We compare different models with runtime in Table 3. The run-
time represents the time it takes for the model to complete the for-
ward propagation of an image. As can be seen from Table 3, the
model with the shortest run time was BUCT. The models that took
the longest were AIML and Masker, as these two models contain
multiple sub-segmentation networks for model voting.

4.5. Ablation study

We conducted an ablation study based on a U-Net baseline to
demonstrate the effectiveness of the proposed modules: dual-
branch module, relation transformer fusion module, and weighted
fusion module. Table 4 shows the performance of our proposed dif-
ferent modules on three public datasets.

4.5.1. Ablation study for dual-branch module (DBM)
The DBM module contains a general feature extraction branch

and a vessel feature guidance branch. The feature output of the
vessel feature guidance branch depends on the vessel space, which
is correlated with OC features. To verify the effectiveness of The
DBM module, we use the U-Net network with ResNet encoder as
our baseline. U-Net with DBM means that the baseline uses the
DBM module as the encoder; similar to the skip connection of U-
Net, the multiple layer outputs in the general feature extraction
branch are summed with the corresponding layer of the decoder;
the highest level feature output of the vessel feature guidance
branch is summed with the corresponding general feature extrac-
tion branch for feature fusion; the decoder part is consistent with
U-Net. As Table 4 shows, U-Net with DBM outperforms U-Net by
average 1% on OC segmentation. To further demonstrate the per-
formance of our proposed DBM module, We compare the perfor-
mance of our PKRT-Net without DBM. The performance of PKRT-
Net without DBM drops by about 2% on OC segmentation. The
results demonstrate that the DBM module can capture effective
features from prior knowledge (i.e., vessel space) and extract a
more robust feature representation to improve the performance
of OC segmentation.

4.5.2. Ablation study for relation transformer fusion module (RTFM)
The RTFM module performs correlation calculations on long-

range dependent features from two branches using multiple trans-
former blocks. To verify the effectiveness of RTFM, we compared
the performance of U-Net with and without RTFM. U-Net with
RTFM represents that the highest-level features of U-Net are repli-
cated as two separate features for the dual inputs of RTFM, respec-
tively; the output of RTFM is fed into the decoder of U-Net. It can
be seen from Table 4 that U-Net with RTFM achieves about 3%
and 1% improvement on OC and OD respectively on three public
datasets. The results demonstrate that the RTFM module can effec-
Table 4
Ablation tests on REFUGE, Drishti-GS and RIM-ONE(r3).

Baseline DBM RTFM WFM REFUG

DiceCup

U-Net(R34) – – – 0.8369p
– – 0.8478

–
p

– 0.8637
–

p p
0.8712p p

– 0.8809p p p
0.8997
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tively mine the long dependencies of features and facilitate the
segmentation of OC and OD.
4.5.3. Analysis for relation transformer fusion module (RTFM)
As shown in Fig. 4, we will analyze the reasons why the inter-

branch relationship and the intra-branch relationship in the RTFM
can improve the final performance at the medical aspect and the
engineering aspect.

Medical aspect: The more accurate OC boundaries in the fun-
dus image are determined by a combination of the clear boundary
information and the clinical prior knowledge. Especially for fundus
images with unclear OC boundary, clinicians extract OC boundary
in three main steps: first use clear boundary information to deter-
mine part of OC boundary, and then use effective vessel kinks to fit
the remaining boundary information. The final OC boundary is
obtained by combining the information from both perspectives.

Engineering aspect: To mimic the three steps in the clinical
process described above, our proposed RTFM incorporates three
relationships: the edge feature branch (intra-branch) relationship,
the prior knowledge branch (intra-branch) relationship, and the
inter-branch relationship. (1) The local edge relationship is used
to imitate clinicians to extract relationships between edges. Specif-
ically, the h-group projection transforms were used to generate the
new h-group local edge-based features (i.e., VG

i and KG
i ). The h-

group projection transforms method was proposed in [42] and it
is widely used in the field of vision. From an engineering point of
view, the h-group projection transforms increase the diversity of
features, which has a positive effect on the final performance
improvement. (2) The prior knowledge relationship was used to
model the relationship of the vessel kinks clinically. Specifically,
we have used the h-group projection transforms to generate the
new h-group prior knowledge-based features (i.e., QV

i ), which is
important for enhancing representations between prior knowl-
edge. (3) The inter-branch relationship is used to imitate the way
clinicians combine boundary information and vessel information
to determine OC boundary. We design cross-attention to model
the long dependencies between the two branches to generate a
relation matrix; then the relation matrix is used to adjust the
attention weights; finally, a multilayer perceptron (MLP) is used
to enhance the joint of the features from two branches. Similar
to the clinical experience, the combination of edge information
and vessel information outperforms either of them independently.
4.5.4. Ablation study for weighted fusion module (WFM)
The WFM module mainly fuses features from the RTFM and the

multi-slice output of the decoder. To verify the effectiveness of the
WFM module, we append WFM to U-Net + RTFM (U-Net with
RTFM) to observe the performance changes of the model. Com-
pared with U-Net + RTFM, U-Net + RTFM with WFM achieves an
average improvement of 0:7% in the segmentation of OC and OD
on three public datasets, which illustrates the effectiveness of the
WFM.
E Drishti-GS RIM-ONE(r3)

DiceDisc DiceCup DiceDisc DiceCup DiceDisc

0.9492 0.8584 0.9565 0.8125 0.9392
0.9491 0.8676 0.9559 0.8245 0.9401
0.9584 0.8893 0.9654 0.8473 0.9483
0.9693 0.8946 0.9695 0.8564 0.9546
0.9587 0.8986 0.9658 0.8585 0.9493
0.9751 0.9120 0.9766 0.8723 0.9582
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4.5.5. Ablation study for different non-local modules
Theoretical analysis: Attention as a non-local module has been

a hot research topic. Many improvements to the attention mecha-
nism based on QKV have been proposed, among which the most
influential work is the transformer. The transformer structure
was first proposed in the field of natural language processing
(NLP). Further, the transformer has shown to be effective in com-
puter vision as well. Compared with the attention structure, the
classic transformer structure includes 12 parallel attention heads
to enhance the diversity of features [42]. In addition, the trans-
former also includes MLP (multiple fully connected layers). MLP
is an important part of improving transformer performance [66].
In our research, the attention in the transformer is modified to
cross-attention in order to have the ability to model across
branches. Therefore, the RTFM module proposed in this paper
inherits the original advantages of the transformer and also has
the ability to model across branches.

Experiment analysis: To compare the performance of different
local blocks, we remove the RTFM module in our proposed frame-
work as the baseline, and then use the following three non-local
modules (i.e., CSAM [67], BAM [68], and PAM [68]) for performance
comparison.

� CSAM: The channel & spatial attention module (CSAM) [67] is
proposed for vessel segmentation in fundus images, and the
CSAM module can be inserted in the middle of any encoder
and decoder network. CSAM contains spatial and channel atten-
tion blocks. In this experiment, the input to CSAM is the con-
catenation of two encoder network features.

� BAM: The basic spatial attention module (BAM) [68] is proposed
to model the relationship of two branch networks, whose input
is the output of the two branch networks. It can be integrated
into the baseline framework with little modification.

� PAM: The pyramid spatial attention module (PAM) [68] intro-
duces a pyramid structure based on the BAM module. Its input
is the output features of the two branch networks, and it can
also be combined with the baseline framework with little
modification.

As can be seen from Table 5, CSAM, BAM and PAM can improve
the performance compared with baseline. Compared with non-
local blocks, our proposed RTFM module can achieve better
performance.
4.6. Visualization

Fig. 6 shows visual examples of OC and OD segmentation from
the Drishti-GS, REFUGE, and RIM-ONE(r3) datasets. The closed
curves in green and blue represent the boundaries of OC and OD,
respectively. The fundus images in the first three rows (i.e., rows
A, B, and C) of Fig. 6 are samples from Drishti-GS dataset. The fun-
dus images in the fourth and fifth rows (i.e., rows D and E) of Fig. 6
are samples from the REFUGE dataset. The last row (i.e., row F) of
Fig. 6 is the fundus image from RIM-ONE(r3) dataset. It can be seen
from Fig. 6 that our PKRT-Net can achieve better OC and OD seg-
Table 5
Comparison of different non-local modules on REFUGE.

Method non-local modules REFUGE

DiceCup DiceDisc

Baseline – 0.8725 0.9659
+CSAM 0.8773 0.9698
+BAM 0.8831 0.9655
+PAM 0.8876 0.9693
+RTFM 0.8997 0.9751

10
mentation performance than U-Net on three public available data-
sets. Our proposed feature extraction module (i.e., DBM) and
feature fusion modules (i:e., RTFM and WFM) have significant
improvements for OC segmentation.

The fundus images in the third and last two rows (i.e., C, E, and
F) of Fig. 6 are examples of normal eyes (N), and the fundus images
in the rest rows (i.e., rows A, B and D) are examples from glaucoma
patients (G). It can be observed from the ground truth in the second
column that OC occupies a larger proportion of OD in glaucoma
examples compared with the normal examples.

For better illustration, the fundus image samples in Fig. 6 are
divided into two groups: cases with clear boundaries (i.e., cases
C and E) and cases without obvious boundaries (i.e., cases A, B,
D and F). For cases without obvious boundaries, there is a large
gap between the OC predicted by the U-Net and the Ground Truth;
this shows that it is difficult for the U-Net to effectively predict the
OC boundary when the boundary is unclear; U-Net with DBM
achieves better performance than U-Net. As shown in Fig. 6 (A
and B), U-Net with DBM finds kinks to determine the OC bound-
aries. However, U-Net with DBM does not have enough feature
fusion capability, so the OC contour predicted by U-Net with
DBM is not smooth enough. The OC boundaries predicted by U-
Net with fusion modules (RTFM and WFM) are smoother. Our pro-
posed PKRT-Net obtains more accurate OC and OD boundaries by
effectively combining prior knowledge and feature fusion modules.
For cases with clear boundaries (i.e., cases C and E), both U-Net and
our proposed PKRT-Net can accurately predict the boundaries of
OC and OD. This shows that the CNN network can predict the accu-
rate boundaries of OC and OD when the boundary is obvious.

To clearly demonstrate the effect of vessel segmentation on OC
segmentation, we used the proposed framework for training OC
segmentation only. Fig. 7 shows features generated from our pro-
posed framework for a fundus image from REFUGE dataset, and
the feature maps at different stages are used to demonstrate the
role played. The features are displayed as heatmaps on the fundus
image to visualize the model’s attention to different positions of
the image. Fig. 7 shows that the location of the vessel guidance
branch focus is similar to that of the clinician focus, which provides
the model with a clinical prior knowledge. The vessel feature guid-
ance branch is beneficial for the model to obtain results closer to
the ground truth. How vessel kink works is described in detail
below.

Sub-figure (a) in Fig. 7 represents the zoomed fundus image and
the predicted vessel structure. To better visualize the vessel seg-
mentation, we show the predicted vessels as a heatmap on the fun-
dus image. The black circles in the vessel feature prediction
represent areas of concern to clinicians. Sub-figure (b) shows that
the focus of the vessel guidance branch is similar to clinicians’
focus in sub-figure (a). Sub-figure (c) shows that the features of
the general feature extraction branch are more dependent on loca-
tions with clear boundary information. This dependency leads to a
large gap between the region of feature focus and the Ground
Truth. In this case, the vessel branch will be able to play a more
positive role. The features of the vessel branch were fused with
the features of the general feature extraction by RTFM, which made
the fused features more similar to Ground Truth. Because RTFM
contains multiple sublayers, we visualized features in the first sub-
layer and the final sublayer of RTFM to demonstrate changes in
model attention. From sub-figure (d), it can be observed that the
position of the vessel branch focus gradually guides the model to
obtain results close to the Ground Truth.

4.7. Discussion

Automated OC and OD segmentation methods are very impor-
tant to achieve large-scale glaucoma screening. Although existing



Fig. 6. Illustration of experimental results on the REFUGE, RIM-ONE(r3), and Drishti-GS datasets. The closed curves in green and blue represent OC and OD boundary,
respectively. The first column: zoomed fundus image; the second column: Ground Truth of OC and OD boundary; the third column: the results of U-Net model (Baseline); the
fourth column: U-Net with Dual-branch Module(DBM); the fifth column: U-Net with relation transformer fusion module (RTFM) and Weighted Fusion Module (WFM); the
last column: our proposed PKRT-Net. N and G represent examples from normal eyes and glaucoma patients, respectively.
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deep learning methods have achieved impressive performance, the
accuracy of OC segmentation is limited due to the fact that deep
learning methods focus more on boundaries and ignore clinical
prior knowledge. In the present study, we introduce clinical prior
knowledge into deep network to improve the performance of OC
segmentation, in which a novel hybrid CNN and transformer are
used to model global features. Our results demonstrate that clinical
prior knowledge can help deep networks improve the performance
of OC segmentation. Furthermore, we found that using CNN to
extract shallow features and using transformers to fuse deep fea-
tures is a good solution for balancing computational cost and mod-
eling global feature relationships. To our knowledge, our proposed
method is the first to combine clinical prior knowledge and deep
learning methods for OC and OD segmentation. Our observation
of the effect of clinical prior knowledge on deep networks is consis-
tent with the recent report that clinical prior knowledge con-
tributes to the segmentation of diabetic retinopathy multi-lesion
[69]. It also implies that the clinical prior knowledge can be intro-
11
duced to other medical images, e.g., breast ultrasound image
[70,71] and spine image [72].

Strengths and Weaknesses. We propose a relation transformer
module to model the relationship between clinical prior knowl-
edge and features automatically extracted by deep networks,
enabling clinical prior knowledge to guide OC segmentation. The
proposed transformer is only used to model high-level features,
so the computational cost and the expensive memory consumption
in the visual transformer framework are limited. While modeling
the vessel-based prior information, some misleading vessel struc-
tures are introduced. As shown in Fig. 8, some vessel structure in
the fundus is very similar to the real vessel kink, and such a vessel
structure is called invalid kink. These invalid vessel structures are
also challenging for clinicians, and only experienced clinicians can
exclude those invalid vessel structures based on the vessel mor-
phology analysis. Our model has limited ability to exclude indistin-
guishable invalid kinks. As shown in Fig. 8, our model deviates
from the Ground Truth due to invalid kinks in a small number of



Fig. 7. Schematic diagram of vessel kink guided OC segmentation.

Fig. 8. Illustration of the invalid kink.
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samples. In future work, we plan to improve our model to avoid
being affected by invalid vessel structures.
5. Conclusion

In this paper, we presented a novel Prior Knowledge-based
Relation Transformer Network (PKRT-Net) for OC and OD segmen-
tation. The proposed PKRT-Net employed a dual-branch module to
extract features from two aspects of clinical prior knowledge and
local edge information. Relation transformer fusion module can
exploit not only the intra-branch relationship in each branch, but
also the inter-branch relationship between a local edge feature
branch and a prior knowledge branch. Moreover, a weighted
fusion-based decoder has been employed to assign weights to
effective features of high-level layers, incorporated with the repre-
sentations of the transformer, to supervise the final result. Experi-
ments show the superiority of our proposed PKRT-Net compared
with other state-of-the-art methods. The experimental results
indicate that the clinical prior knowledge is essential for OC extrac-
tion. We will extend the proposed method to introduce prior
knowledge in other medical image tasks in the future.
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